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Analytical expressions for the noise affecting the different signals of interest in frequency-modulation
dynamic force microscopy are derived. Two noise sources are considered, the thermomechanical noise of the
cantilever and the noise of the deflection sensor. It is shown that distinguishing between amplitude and phase
noise is crucial for a good understanding of the instrument. When the tip is far from the sample surface, in the
absence of any tip-substrate interaction, the system reduces to two independent feedback loops, the first one
maintaining the amplitude at a set point value and the other one keeping a constant phase lag between the tip
oscillation and the cantilever excitation force. Closer to the surface, in the presence of tip-substrate interaction,
these two loops become coupled to an extent that is determined by the nonlinear character of the cantilever
oscillation induced by this interaction. The approximations introduced in deriving these analytical expressions
are validated by numerical simulations and a comparison with experimental measurements is proposed. This
modeling of the noise in frequency-modulation dynamic force microscopy allows us to derive most of the
previously published results in a clear and unified framework. In addition, it demonstrates that the oscillator
nonlinearities play an essential role in determining the noise level of the instrument, an effect that was not
considered before.
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I. INTRODUCTION

Frequency modulation dynamic force microscopy �FM-
DFM�, also called noncontact atomic force microscopy �NC-
AFM�, is now well established as a tool to image insulating
surfaces with atomic resolution.1 Initially restricted to
vacuum environment, this technique has recently been
adapted to ambient and even liquid environment with great
success.2 This evolution was made possible due to many im-
provements of the instrument itself as well as in the associ-
ated experimental methods.

Improving the sensitivity or more precisely the signal-to-
noise ratio of the instrument constitutes a major objective in
these developments. But to progress in this direction it is
necessary to understand what are the important sources of
noise and how these noises propagate in the instrument and
its control system. Noise in FM-DFM was analyzed by sev-
eral authors.3–7 The principal sources of noise have been
identified and the limits they set to the measurements have
been evaluated,3,8,9 but the role played by the complex con-
trol system at work in FM-DFM has not been considered in
details.

The analysis of oscillators affected by both thermal and
nonthermal noise sources is a topic of current interest. One
of the main objectives in this area is to find ways to reduce
the noise of these devices for different applications, for in-
stance, to improve the sensitivity of gravitational wave
detectors10 or to access the quantum regime of an oscillator.11

The present work is different: it explores the way given
noises affect the behavior of the FM-DFM setup but does not
consider how these noises could be reduced even if the
analysis delivered here could be used as a starting point for
that purpose.

In the following, we derive analytical expressions that
describe how the different signals of interest are affected by
noise for a typical FM-DFM setup. Two noise sources are
included, the thermal noise of the cantilever and the intrinsic
noise of the deflection sensor. Three cases of increasing com-
plexity are worked out.

First, no tip-surface interaction is considered. Two closed
loops are operating to stabilize the cantilever oscillation at its
resonance frequency.4 The first one maintains the amplitude
of the cantilever oscillation at a set point value by adjusting
the cantilever excitation force; this force provides a measure
of the intrinsic energy dissipation during the cantilever
oscillation.12 The other one keeps the phase shift between the
excitation force of the cantilever and its oscillation at a con-
stant value. After that, an interaction described as the sum of
a van der Waals and a Morse contributions is introduced but
with a fixed tip-substrate distance. Finally, a distance control
feedback loop is added to the system in order to maintain at
a constant preset value the shift in the cantilever resonance
frequency under the influence of the tip-substrate interaction.

A rigorous analytical treatment of this system is quite dif-
ficult due to intrinsic nonlinearities in the control system and
in the tip-substrate interaction.13 Deriving tractable analytical
expressions requires some approximations, which are vali-
dated in each case by comparison with the results of numeri-
cal simulations carried out using a modified
MATLAB/SIMULINK14 version of our virtual AFM.15,16

After a general introduction to FM-DFM in Sec. II, we
discuss in Sec. III the nature of noise in oscillators, carefully
establishing the distinction between amplitude noise and
phase noise, which will prove essential for the following
developments. The way the cantilever oscillation signal is
amplitude and phase-demodulated is analyzed in Secs. IV
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and V. Analytical expressions for the noise perturbing the
dissipation and the frequency shift signals are then estab-
lished in Sec. VI in the situation where the tip is far from the
surface. These expressions are compared to the results of
numerical simulations in Sec. VII. The tip-substrate interac-
tion is introduced, first maintaining constant the tip-substrate
distance in Sec. VIII, then relaxing this constraint in Sec. IX.
Section X is devoted to a short comparison of these predic-
tions with experimental measurements. Finally, these results
are discussed and a conclusion is given in Sec. XI. Calcula-
tion details are presented in Appendixes A–C. A short ver-
sion of this work was already published.7

II. FM-DFM AS A PHASE-CONTROLLED OSCILLATOR

A. Cantilever as a linear oscillator

The cantilever is modeled as a 1 degree-of-freedom dissi-
pative harmonic oscillator,

mz̈ = − kz − �ż + F�t� ,

where F�t� is an external force. k and m are the spring con-
stant and the effective mass of the cantilever. The free reso-
nance frequency is given by �0=� k

m and the viscosity factor
is given by �=

m�0

Q , where Q is the quality factor of the
cantilever. The corresponding harmonic function is given by

Cl��� =
z���
F���

=
1

k��0
2 − �2

�0
2 +

j�

Q�0
� , �1�

with F���=F0 exp�j�t� and z���=z0 exp�j�t�. Near the
positive resonance frequency, �=�0+�, with ���0,

Cl��0 + �� = C��� �
1

k�−
2�

�0
+

j

Q
� = − j

Q

k

1

�1 + j��c�
,

�2�

where �c= 2Q
�0

. The cantilever behaves as a first order low-
pass �LP� filter for the frequency detuning �=�−�0 in the
vicinity of the resonance.

B. Phase-controlled oscillator

FM-DFM is based on a phase-controlled oscillator4 whose
the cantilever is the frequency determining element �Fig. 1�.
The closed-loop transfer function of the system is

T��� =
z���
F���

=
Cl���

1 − Cl���G���
.

Oscillations at frequency �c are obtained if 1
−Cl��c�G��c�=0, that is, if

�Cl��c���G��c�� = 1,

�Cl��c� + �G��c� = 0,

where �Cl and �G are the arguments of Cl��� and G���.
Using the second condition and expression �1�, one obtains

�G��c� − arctan� �c

Q�0

1

1 −
�c

2

�0
2 	 = 0 �3�

and

�c = −
�0

2Q tan
�G��c��
+ �0� 1

4Q2 tan2
�G��c��
+ 1.

�4�

This expression shows how the phase setting of the feedback
amplifier G��� controls the oscillator frequency �c. In gen-
eral, this frequency will be different from �0, the free reso-
nant frequency of the cantilever. In this situation, a change in
the Q factor due to a dissipative tip-substrate interaction will
induce a shift of the oscillation frequency. This undesirable
coupling can be avoided only if �c=�0. Then,

�G��0�� =
1

�Cl��0��
=

k

Q
, �5�

�G��0� = − �Cl��0� =
�

2
. �6�

In the following, we will consider that these relations are
always satisfied. Note however that, at least for high Q can-
tilevers, this coupling is very weak and the instrument is
quite robust with respect to phase detuning.17

Figure 2 shows how this oscillator is implemented in FM-
DFM. Two feedback loops are necessary: the first one uses
an automatic gain control �AGC� circuit to keep the ampli-
tude at a constant level Asp defined by the user, satisfying
condition �5�. The second one maintains the optimal phase
relationship given by condition �6� by means of a phase-
locked loop �PLL� circuit including a phase shifter. The role
of this circuit is not only to generate a sinusoidal waveform
at the frequency detected at its input but also to measure the
frequency shift 	f�t�. First FM-DFM systems used an analog
quadrature frequency demodulator based on passive
components.3 Today, PLL systems are present in most FM-
DFM due to their higher stability and signal-to-noise ratio.19

Before analyzing the noise of this oscillator, it is useful to
discuss the nature of noise in oscillators and the way the
AGC and the PLL transform different types of noise.

++++++
F(ω) z(ω)Cl(ω)

G(ω)

FIG. 1. The cantilever and its positive feedback amplifier G,
represented by their harmonic transfer functions Cl��� and G���.
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III. NOISE IN OSCILLATORS

A. Sinusoidal representation of narrow band noise

The minimal coherence time of a signal at the output of a
band-pass filter of width 	� scales as 	�−1.20 The reason is
that the time needed to build a significant phase difference
	
 between two sinusoidal components at �c− 	�

2 and �c

+ 	�
2 , where �c stands for the central frequency of the filter,

is given by 	t= 	

	� . The high Q cantilevers used in FM-DFM

behave as narrow band-pass filters of coherence time �c

= 2Q
�c

as indicated by expression �2�. �c is in general 1 order of
magnitude greater than the time response of the electronics.
In these conditions, the time taken by a signal to travel
around one of the feedback loops of the control system is
negligible compared to �c; the signal remains coherent and
noise can be safely considered as a superposition of indepen-
dent perfect sinusoidal components.

Noises will be characterized by their power spectral den-
sity �PSD�. Errors and confusions are reproduced in many
papers due to implicit conventions concerning spectral analy-
sis. Here we consider positive and negative frequencies, im-
plying that, unless otherwise stated, we consider two-sided
PSDs. To get one-sided PSDs, the displayed spectra should
be multiplied by two and considered only in the positive
frequency domain.

In the following analysis, a noise x�t� of PSD Sx��� will
be represented by a sinusoidal component xs�t�=x0 sin��t�.
x0 is related to Sx���, expressed in �dimension of x�2 Hz−1,
by the following relation:

Sx��� � 1 Hz = � x0

2
�2

,

obtained by equating the mean square value of the noise x�t�
in a 1 Hz bandwidth to the mean square value of xs�t�.20

B. Amplitude noise and phase noise

Amplitude and phase noise �PN� refer to a carrier
signal

a�t� = Ac sin��ct + �c� , �7�

with Ac, �c, and �c being the amplitude, the frequency, and
the phase of the carrier. In the following, �c=0, with no loss
of generality.

1. Amplitude noise

Amplitude noise modulates the amplitude Ac of the car-
rier,

a�t� = Ac
1 + m�t��sin��ct� . �8�

As discussed in the preceding paragraph and following
Robins20 and Cleland and Roukes,21 we represent the ampli-
tude noise by a single sinusoidal component m�t�
=m0 cos��t+�a�. Then,

a�t� = Ac sin��ct� + Ac
m0

2
sin
��c + ��t + �a�

+ Ac
m0

2
sin
��c − ��t − �a� . �9�

The amplitude modulation generates sidebands at � from
the carrier, with amplitude Ac

m0

2 . The lower sideband is phase
coherent with the upper sideband with the same sign. This is
the signature of amplitude noise.

2. Phase noise

Phase noise modulates the phase of the carrier,

a�t� = Ac sin
�ct + ��t�� . �10�

Here too, we consider a single phase noise component ��t�
=�0 sin��t+��� with �0�2�. Then,

a�t� = Ac sin��ct� + Ac
�0

2
sin
��c + ��t + ���

− Ac
�0

2
sin
��c − ��t − ��� + O��0

2� . �11�

The phase modulation generates sidebands at � from the
carrier, with amplitude Ac

�0

2 . The lower sideband is phase
coherent with the upper sideband with the opposite sign. This
is the signature of phase noise.

Frequency modulation is related to phase modulation by

��t� =
d
�ct + ��t��

dt
= �c +

d��t�
dt

.

Hence, one obtains the time dependent frequency variation,

	f�t� =
��t� − �c

2�
=

1

2�

d��t�
dt

=
�

2�
�0 cos��t + ��� .

3. Combination of amplitude and phase noises

These expressions are easily generalized to the case of
amplitude and phase modulated carrier,

a�t� = Ac
1 + m�t��sin
�ct + ��t�� , �12�

giving

CTS

PLL

z(t)

F(t)
∆f(t) Asp

w(t)

D(t)

AGC

FIG. 2. The two feedback loops necessary to keep the oscillating
cantilever at its resonance frequency with a constant amplitude Ac

=Asp, where Asp is the amplitude set point. CTS represents the
cantilever-tip-substrate system with two inputs: the excitation force
F�t� and the cantilever-substrate distance D�t�. The output z�t� is the
oscillation of the cantilever measured by a deflection sensor such as
a two-quadrant photodiode in the case of the optical beam deflec-
tion method �Ref. 18�. The automatic distance control �ADC� feed-
back loop, which uses the signal 	f�t� to control the distance D�t�,
is not included in the figure.
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a�t� = Ac sin��ct� + Ac
m0

2
�sin
��c + ��t + �a�

+ sin
��c − ��t − �a� + Ac
�0

2
�sin
��c + ��t + ���

− sin
��c − ��t − ��� + O�m0�0,�0
2� . �13�

Expressions �12� and �13� are equivalent ways of expressing
the same noise.

IV. AMPLITUDE DEMODULATION: THE SYNCHRONOUS
DEMODULATOR

The function of an amplitude demodulator is to extract the
amplitude Ac from a modulated waveform as represented by
expressions �12� and �13�. We discuss here the case of a
synchronous demodulator �SD�. This device is critical in the
analysis of our model FM-DFM setup because it includes a
multiplier, which is considered as a nonlinear element in
control theory.22 Several ways exist to model this
element.23–25 We propose the scheme shown in Fig. 3 where
the signal is first multiplied by itself, then passed through the
first-order LP filter.

If we apply the signal given by Eq. �13� at the input, with
m0�1 and �0�2�, we obtain �see Fig. 3 for the labeling of
the signals�

b�t� = a2�t�

� Ac
2 sin2��ct� + Ac

2m0 sin��ct�sin
��c + ��t + �a�

+ Ac
2m0 sin��ct�sin
��c − ��t − �a�

+ Ac
2�0 sin��ct�sin
��c + ��t + ���

− Ac
2�0 sin��ct�sin
��c − ��t − ��� ,

where second-order noise contributions �involving the prod-
ucts m0

2, m0�0, or �0
2� are neglected. Ignoring the high fre-

quency components at 2�c� ����c�, which will be
eliminated by the LP filter, we get, after the 2 /Ac gain,

c�t� = Ac + 2Acm0 cos��t + �a�

and finally after LP

d�t� = Fsd�0�Ac + Acm0�Fsd���exp
j��t + �a��

+ Fsd���exp
− j��t + �a�� , �14�

where

Fsd��� =
1

1 + j��D
�15�

is the harmonic function of the low-pass filter and Fsd���
stands for its complex conjugate.

The output signal of the SD d�t� gives as expected the
carrier amplitude Ac 
Fsd�0�=1� and amplitude modulation
sidebands, which have been transposed in frequency from
�c� to �. The phase modulation is not transmitted by
the SD.

V. PHASE DEMODULATION: THE PLL

The function of a phase demodulator is to extract the
phase ��t� from a modulated waveform such as Eq. �12�. We
discuss here the case of a PLL detector, which is commonly
used for FM-DFM. The block diagram presented in Fig. 4
features a linear PLL �see Ref. 26 for PLL classification�. A
second-order low-pass loop filter was chosen because it gives
a behavior that is close to that of our experimental setup.15

This device includes nonlinear components and thus de-
serves a special attention.

The sgn function at the input of the PLL 
giving an output
of +1 �−1� for positive �negative� sign� prevents amplitude
noise from perturbing the PLL. This operation is done by a
discriminator or a limiter in the electronics.27 For a small
modulation m0�1, it removes the amplitude dependence of
the input signal,

sgn�Ac
1 + m�t��sin
�ct + ��t�� = sgn�sin
�ct + ��t�� .

The amplitude noise m�t� is eliminated and the phase noise
��t� is transmitted.

It can be shown �see Appendix A and Ref. 26� that the
PLL of Fig. 4 in its locked state can be modeled as a linear
system with a phase harmonic function

H��� =
GPLL

j�

FPLL���
+ GPLL

, �16�

where the loop gain GPLL has the dimension of an angular
frequency and

FPLL��� =
1

1 + j��1

1

1 + j��2
�17�

is the harmonic function of the second-order low-pass filter.
The output of the voltage controlled oscillator �VCO� of the
PLL when signal �12� is applied to its input is then given by
e�t�=cos
�ct+�out�t�� with

�out�t� =
2�	f�t�

�
=

�0

2j
�H���exp
j��t + ����

− H���exp
− j��t + ���� . �18�

Then the excitation signal reads exc�t�=cos
�ct+�out�t�

a(t) 2/Ac LP τD
Fsd

d(t)b(t) c(t)

FIG. 3. Block scheme of the synchronous demodulator.

Sign

Kν LP τ1τ2

VCOPS
exc(t)

a(t)

Fpll

b(t) c(t)

e(t) d(t)
∆f(t)

FIG. 4. Block diagram of the PLL. VCO: voltage controlled
oscillator; PS: phase shifter.
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+�PS�, where �PS is fixed by the phase shifter �PS� �Fig. 4�.
In the absence of tip-substrate interaction, �PS=0 satisfies
condition �6�. For small phase modulation of amplitude �0
�2�,

exc�t� � cos��ct� +
�0

4

exp�j�ct� − exp�− j�ct��

��H���exp
j��t + ���� − c.c. , �19�

where c.c. stands for the complex conjugate of the first term
of the expression in braces.

Here also, the sidebands of the phase modulation at
�c� have been transposed to � by the frequency de-
modulator.

VI. NOISE ANALYSIS OF THE FM-DFM OSCILLATOR

We can now analyze how the noise affects the behavior of
the oscillator of Fig. 2.

Two noise sources dominate in FM-DFM:5,6

�1� One is the thermal equilibrium noise of the cantilever
�F�t�, which can be modeled by a driving white force noise
of two-sided PSD,3

SF = 2�kBT =
2kkBT

�0Q
,

in N2 Hz−1, where kBT is the thermal energy. Due to the
equipartition of energy, the power of thermal noise when it is
added to a carrier should be equally shared between ampli-
tude force noise SF

a and phase force noise SF
� without corre-

lation. Thus, SF=SF
a +SF

�, with SF
a =SF

�= 1
2SF. Note that this

noise is intrinsic in the sense that it depends only on the
cantilever characteristics and not on the deflection measure-
ment method used.

�2� The other is the noise of the deflection sensor �z�t�,
which can be modeled by a white noise of two-sided PSD Sz.
As usually, this noise is expressed as an equivalent input
noise, which is the noise that has to be applied to the input of
an ideal noiseless deflection sensor to produce the measured
output noise. It is thus expressed in m2 Hz−1. In contrast to
the thermal noise, the amount and type of noise depend on
the specific sensor and electronics used and on its detailed
implementation. In the absence of more precise specifica-
tions, we will consider a white noise with Sz

a=Sz
�= 1

2Sz. Note
that these assumptions are correct for the optical beam de-
flection method,18 where the photodiode shot noise is usually
dominant, and when using a tuning fork, where the white
noise of the transimpedance output amplifier is also
dominant.28

Other noise sources should be included for a realistic de-
scription of any particular FM-DFM setup. Of special impor-
tance is the distance noise induced by the vibrations of the
mechanical structure and the noise generated by the elec-
tronic components of the control system. These contributions
will not be considered here. They are too specific to each
instrument to lend themselves to a general treatment.

In the AGC block of Fig. 5, the amplitude signal produced
by the SD is compared to the constant amplitude set point

Asp. The resulting error signal is then shaped by a
proportional-integral �PI� corrector.

The signals z�t�, e�t�, and F�t� are considered as carriers at
frequency �c=�0, the free resonance frequency of the canti-
lever in the absence of tip-substrate interaction, amplitude,
and phase modulated by sinusoidal components of frequency
� modeling the noise, as discussed in Sec. III. The amplitude
of these components is supposed to be small enough to sat-
isfy the conditions of validity of expressions �14� and �19�.
The signals d�t�, w�t�, and 	f�t� are demodulated signals at
frequency �. As a first step, we consider only the thermal
force equilibrium noise of PSD SF.

A. Introduction of the thermal force noise

The thermal noise is modeled as a sinusoidal signal �F�t�
introduced into the system as shown in Fig. 5. The trajectory
z�t� of the tip is given by a general expression of type �13�,
with �c=�0; the free resonance frequency of the cantilever
in the absence of tip-substrate interaction

z�t� = Ac sin��0t� + �za�sin
��0 + ��t + �a�

+ sin
��0 − ��t − �a� + �z��sin
��0 + ��t + ���

− sin
��0 − ��t − ��� , �20�

where �za=Ac
m0

2 and �z�=Ac
�0

2 . Using expression �14�, the
dissipation signal at the output of the AGC, taking into ac-
count the thermal force noise, can be expressed as

w�t� = FAGC�0��Ac − Asp�

+ 2�za�FAGC���exp
j��t + �a�� + c.c. , �21�

where the harmonic function of the AGC writes

FAGC��� = − Fsd����P +
I

j�
� , �22�

P �I� being the gain of the proportional �integral� branch of
the PI controller. FAGC�0� diverges to infinity. This diver-
gence can be avoided only if Ac−Asp=0, that is, if Ac=Asp.
One recovers the well-known action of the integrator gain of
a P-I controller, which cancels the amplitude steady-state
error. This necessary condition will be maintained in the fol-
lowing of the paper.

The excitation signal at the output of the VCO of the PLL,
taking into account the thermal force noise, is given by ex-
pression �19�, with �0=

2�z�

Asp
,

+
+

+
+

CTS

PLL

z(t)

F(t)
SD

+

PI

Asp

exc(t)

d(t)

w(t)
e(t) A

G
C

FIG. 5. The thermal noise �F�t� and the detection noise �z�t� are
introduced in the system. CTS represents the cantilever-tip-
substrate system.
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exc�t� � cos��0t� +
�z�

2Asp

exp�j�0t� − exp�− j�0t��

��H���exp
j��t + ���� − c.c. . �23�

The modulation representing the force thermal noise of PSD
SF is also given by a general expression of type �13�, taking
into account that the carrier of F�t� is proportional to
cos��0t�,

�F�t� = �Fa
�n��cos
��0 + ��t + �a

�n�� + cos
��0 − ��t − �a
�n��

+ �F�
�n��cos
��0 + ��t + ��

�n�� − cos
��0 − ��t − ��
�n�� ,

�24�

where �Fa
�n� and �a

�n� ��F�
�n� and ��

�n�� characterize the ampli-
tude and phase of the thermal force amplitude modulation
�phase modulation�. �Fa

�n� ��F�
�n�� is related to SF

a �SF
�� by the

following relations, as explained in Sec. III A:

SF
a � 1 Hz = ��Fa

�n�

2
�2

, SF
� � 1 Hz = ��F�

�n�

2
�2

. �25�

Moreover, amplitude noise and phase noise of the excitation
force are uncorrelated and considered here as the inputs of
the system. The phases at t=0 can then be chosen at will
without loss of generality. With �a

�n�=��
�n�=0, expression �24�

becomes

�F�t� = ��Fa
�n� + �F�

�n��cos
��0 + ��t�

+ ��Fa
�n� − �F�

�n��cos
��0 − ��t� . �26�

Following Fig. 5, F�t�=exc�t�w�t�+�F�t�. Then, for each fre-
quency component F��� of F�t�, Cl���F���=z���. Neglect-
ing the second-order noise terms—in �za�z�—one gets fi-
nally the following:

�1� For the frequency �0,

jCl��0�FAGC�0��Ac − Asp� = Asp

�remembering that Ac=Asp� and the c.c. of this equation.
From expression �1�, jCl��0�= Q

k . Then, FAGC�0��Ac−Asp�
=

kAsp

Q . One recovers condition �5�.
�2� For the frequency �0+�,

Cl��0 + ���2FAGC����za
˜ +

k

Q
H����z�

˜ + �Fa
�n� + �F�

�n��
= − j��za

˜ + �z�
˜� �27�

with �za
˜=�za exp�j�a� and �z�

˜=�z� exp�j���, and the c.c. of
this equation.

�3� For the frequency �0−�,

Cl��0 − ���2FAGC����za
˜ −

k

Q
H����z�

˜ + �Fa
�n� − �F�

�n��
= j��za

˜ − �z�
˜� �28�

and the c.c. of this equation. Using expression �2�, one gets
Cl��0−���−Cl��0+�� and Eq. �28� becomes

Cl��0 + ���2FAGC����za
˜ −

k

Q
H����z�

˜ + ��Fa
�n� − �F�

�n���
= − j��za

˜ − �z�
˜� . �29�

Combining Eqs. �27� and �29�, one obtains

C���
2FAGC����za
˜ + �Fa

�n�� = − j�za
˜ , �30�

C���� k

Q
H����z�

˜ + �F�
�n�� = − j�z�

˜ �31�

with Cl��0+��=C��� 
expression �2��. These equations are

decoupled in the variables �za
˜ and �z�

˜. This implies that for
noise or small displacements from equilibrium, the two feed-
back loops of the control system work independently. It is
hardly necessary to insist on the importance of this point,
which provides the basis for our subsequent analysis. From
these expressions,

�za
˜ =

jC���
1 − jC���2FAGC���

�Fa
�n�, �32�

�z�
˜ =

jC���
1 − j k

QC���H���
�F�

�n�. �33�

The dissipation signal can be derived from Eqs. �21� and
�32�,

w�t� =
kAsp

Q
+ � 2jC���FAGC���

1 − 2jC���FAGC���
exp�j�t� + c.c.��Fa

�n�

= W�0� + �W���exp�j�t� + �W���exp�− j�t� , �34�

where w�t� has the dimension of a force.
The mean power dissipated to excite the cantilever can be

calculated from the work performed by the force F�t� on the
cantilever,

P = lim
T→�

1

T
�

0

T

F�t�
dz

dt
dt

= lim
T→�

1

T
W�0�Asp�0�

0

T


cos��0t��2dt =
�0AspW�0�

2
.

The mean energy dissipated during one period of oscillation
reads then

P
2�

�0
= �AspW�0� =

�kAsp
2

Q
, �35�

as shown in Ref. 12. The instantaneous dissipated power is
then given by P�t�=

�0Aspw�t�
2 .

The component at frequency � can be extracted from
expression �34�,
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�W��� =
2jC���FAGC���

1 − 2jC���FAGC���
�Fa

�n�. �36�

The PSD of w can now be derived using expression �25�,

PSDw��� = ��W����2 = � 2jC���FAGC���
1 − 2jC���FAGC���

�2

4SF
a .

The static limit is easily obtained from the equivalent expres-
sion, derived by using relations �2�, �15�, and �22�, with the
Laplace variable s= j�,

PSDw�s� = �2�Q/k�
Ps + I

�c�Ds3 + ��c + �D�s2 + 
1 + 2�Q/k�P�s + 2�Q/k�I
�2

4SF
a .

Then,

lim
PSDw�s��s→0 = 4SF
a =

4kkBT

�0Q
. �37�

This value agrees with that given in Ref. 8 within a numeri-
cal factor on the order of unity and with Ref. 9 within a
factor of 2.

From Eq. �18�, the frequency detuning is given by

	f�t� =
�

2�
�out�t� =

�

j2�Asp
�H���exp�j�t��z�

˜ − c.c.

= 	f���exp�j�t� + 	f���exp�− j�t� .

�38�

With Eq. �33�, the component at frequency � reads

	f��� =
j�C���H���

j2�Asp�1 − j
k

Q
C���H�����F�

�n�, �39�

leading to

PSD	f��� = �	f����2 =
1

4�2Asp
2 � j�C���H���

1 − j
k

Q
C���H����

2

4SF
�.

The static limit is obtained from the equivalent expression
using relations �2�, �16�, and �17�,

PSD	f�s� =
s2

4�2Ac
2�Q

k

GPLL

�1�2�cs
4 + ��1�2 + �1�c + �2�c�s3 + ��1 + �2 + �c�s2 + �1 + �cGPLL�s

�2

4SF
�,

leading to

lim
PSD	f�s��s→0 =
f0kBT

2�kAsp
2 Q

�40�

giving �in Hz2 /Hz� the �two-sided� lower limit of thermally
induced frequency noise, in agreement with the �one-sided�
expression calculated by Albrecht et al.3 and experimentally
confirmed in a recent paper.29 Note that this limit is obtained
only when GPLL�

1
�c

, a condition insuring that the thermal
noise peak is well within the bandwidth of the PLL, and
which is always satisfied for high Q cantilevers in UHV.

B. Introduction of the detection noise

It is straightforward to include in these expressions the
modulation representing the detection noise �z�t�, introduced
as in expression �26�,

�z�t� = ��za
�n� + �z�

�n��sin
��c + ��t�

+ ��za
�n� − �z�

�n��sin
��c − ��t� ,

where �za
�n� ��z�

�n��, the amplitude �phase� modulation of the
position of the cantilever, is related to the PSD Sz by expres-
sions analogous to Eq. �25�.

The calculation proceeds as in Sec. VI A with the new
trajectory of the tip given by z�t�+�z�t�. Equations �30� and
�31� become

C���
2FAGC�����za
˜ + �za

�n�� + �Fa
�n�� = − j�za

˜ , �41�

C���� k

Q
H�����z�

˜ + �z�
�n�� + �F�

�n�� = − j�z�
˜ , �42�

where �za
˜ ��z�

˜� has been replaced by �za
˜+�za

�n� ��z�
˜

+�z�
�n�� in the left-hand sides. One then gets
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�za
˜ =

jC

1 − 2jCFAGC

�Fa

�n� + 2FAGC�za
�n�� , �43�

�z�
˜ =

jC

1 − j
k

Q
CH

��F�
�n� +

k

Q
H�z�

�n�� , �44�

where the dependencies in � have been omitted for simplic-
ity. Equation �43� shows that the amplitude noise of the po-
sition of the cantilever couples to the amplitude detection
noise and amplitude force thermal noise. Conversely, Eq.
�44� shows that the phase noise of the position of the canti-
lever couples to the phase detection noise and phase force
thermal noise.

Expressions �36� and �39� are generalized to

�W��� =
2FAGC

1 − 2jCFAGC

jC�Fa

�n� + �za
�n�� �45�

and

	f��� =
�

j2�Asp

H

1 − j
k

Q
CH


jC�F�
�n� + �z�

�n�� . �46�

Finally, the PSDs with the thermal and detection noise read

PSDw��� = 4� 2FAGC

1 − 2jCFAGC
�2

��C�2SF
a + Sz

a� , �47�

PSD	f��� =
�2

�2Asp
2 � H

1 − j
k

Q
CH�

2

��C�2SF
� + Sz

�� . �48�

The noise propagation in the system can be visualized on the
block diagrams of Fig. 6, built from Eqs. �45� and �46�. The
amplitude demodulation loop of open-loop gain 2jCFAGC in-
volves only amplitude noises, while the frequency demodu-
lation loop of open-loop gain j k

QCH involves only frequency
noises.

The amplitude of the cantilever oscillation30 is given by
A�t�=Ac
1+m�t��=Asp+2�za cos��t+�a�. The PSD of the
amplitude can then be evaluated from Eq. �43�,

PSDamp��� = ��za�2 = 4� C

1 − 2jCFAGC
�2

�SF
a + 4�FAGC�2Sz

a� .

�49�

In the static limit,

lim
PSDamp�����→0 = 4Sz
a. �50�

The amplitude PSD is not affected by the force thermal noise
in this limit because at low frequency the AGC works ide-
ally: it reacts by adjusting the excitation force e�t�
=w�t�exc�t� to cancel the force thermal noise of the cantile-
ver �F�t� �Fig. 5� to maintain its amplitude at the set point
value Asp. In contrast, the detection noise, on which the AGC
cannot react, is integrally transmitted to the amplitude.

VII. NUMERICAL SIMULATIONS

These analytical expressions rely on a number of approxi-
mations. The purpose of the following numerical simulations
is to precise their validity domain. The numerical methods
and mathematical procedures used to perform the simula-
tions are detailed in Appendix B.

As mentioned previously, Sz, the two-sided PSD of the
deflection sensor noise depends on the design of the detec-
tion system and varies greatly from one apparatus to the
other. To our knowledge, the lowest values for the square
root of the one-sided PSD �2Sz obtained with a cantilever
beam deflection system are below 10 fm Hz−1/2,31 while val-

+
++ 2FagcjC

δwδF
δz

(n)
a
(n)

δza%a

+

+
++ HjC

δF

δzφ

(n)

(n)

δzφ%

k/Q

φ

+

∆f
ν/jAsp

(b)(a)

FIG. 6. Block diagrams representing Eqs. �45� and �46�. �a� 
�b��
illustrates the noise contribution to the dissipation signal �w �fre-
quency detuning signal 	f�.

(b)(a)

FIG. 7. �Color online� Simulated �in green� and calculated �in red� �a� PSDw��� and �b� PSD	f��� for different amounts of detection noise.

Parameters: f0=
�0

2� =270 kHz, k=30 N /m, Q=45 000, Asp=20 nm, P=0.01 N m−1, I=0.5 N m−1 s−1, �D=2 ms, GPLL=5280 rad s−1,
�1=55 �s, �2=160 �s, and SF=3.25�10−30 N2 Hz−1 �T=300 K�. The horizontal dashed lines correspond to the noise thermal limits given
by Eqs. �37� and �40�.
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ues ranging from 100 to 1000 fm Hz−1/2 are more typical.
Figure 7 shows PSDw��� and PSD	f���, with �=� /2�,

obtained by numerical simulation compared with their ana-
lytical expressions �47� and �48� for different amounts of
detection noise. The parameters characterizing the cantilever
and the different blocks of the AFM machine, taken from
Ref. 15, are typical for FM-DFM working in vacuum envi-
ronment.

The horizontal dashed lines correspond to the noise ther-
mal limits given by Eqs. �37� and �40�. When the detection
noise is small �Sz=0 or Sz=2�10−28 m2 Hz−1�, the spectra
are close to their thermal limit in the measuring bandwidth,
which is around 100 Hz for the dissipation and 1 kHz from
the frequency detuning. In this situation, the variance of the
noise, which is given by the integral of the PSD, scales as �
and the standard deviation scales as �1/2.

The dissipation noise thermal limit is given from expres-
sion �37� by 4SF

a when expressed in N2 Hz−1 or 4SF
a��Asp�2

when expressed in �eV /cycle�2 Hz−1 
see expression �35��,
giving a value of 10−6 �eV /cycle�2 Hz−1 and a variance of
2�10−4 �eV /cycle�2 when integrating from −100 to
+100 Hz. The dissipation standard deviation is then 14
meV/cycle, comparable to the best experimental data ob-
tained so far.32

The frequency detuning noise thermal limit, given by Eq.
�40�, is 3.3�10−7 Hz resulting in a variance of 6.6
�10−4 Hz2 when integrating from −1 to +1 kHz. The fre-
quency detuning standard deviation is then on the order of

0.026 Hz. When the detection noise dominates 
Fig. 7�b�
with Sz=2�10−24 m2 Hz−1�, PSD	f��� increases as �2 from
10 Hz to 1 kHz leading to a standard deviation of the noise
scaling as �3/2, an unusual dependence that strongly favors a
reduction in the bandwidth to improve the signal-to-noise
ratio, as explained by Giessibl.5

Figure 8 shows how the setting of the AGC influences
PSDw��� and PSD	f���. As expected, PSD	f��� is not af-
fected by the setting of the AGC since the two closed loops
work independently. For P=0.1 N m−1, I=10 N m−1 s−1, a
peak appears on PSDw���. It corresponds to a tendency of the
AGC loop to self-oscillate near the peak frequency. For P
=0.01 N m−1, I=0.5 N m−1 s−1, the loop operates near criti-
cal damping.

Figure 9 shows the influence of the quality factor Q on
PSDw��� and PSD	f���. As expected, the noise on both spec-
tra increases for low values of Q since SF�Q−1. It is seen
that only the low frequency part of the spectra ��
�300 Hz� is affected. This is because the thermal noise is
attenuated at higher frequency due to the filtering action of
the cantilever.

The very good agreement between analytical expressions
and simulated spectra shows that the approximations made
previously are valid for the considered parameters.

Until now, the cantilever was far from the surface, free
from any tip-substrate interaction. In Sec. VIII, we introduce
this interaction in the model.

(b)(a)

FIG. 8. �Color online� Simulated and calculated �a� PSDw��� and �b� PSD	f��� for P=0.01 N m−1, I=0.5 N m−1 s−1 and P
=0.1 N m−1, I=10 N m−1 s−1. Sz=2�10−26 m2 Hz−1.

(b)(a)

FIG. 9. �Color online� Simulated and calculated �a� PSDw��� and �b� PSD	f��� for Q=4500 and Q=45 000. P=0.01 N m−1, I
=0.5 N m−1 s−1, and Sz=2�10−26 m2 Hz−1.
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VIII. INTRODUCING THE TIP-SUBSTRATE
INTERACTION

A. Tip-substrate interaction model

In order to highlight the effects of the tip-surface interac-
tion on the noises of the system, we introduce conservative
forces. The van der Waals potential for the sphere-plane ge-
ometry of the AFM can be modeled by the approximate
expression33,34

UvdW�D + z� = −
HR1

6�D + z�
,

where H is the Hamaker constant of the tip-vacuum-sample
junction, R1 is the tip apex radius, and D+z is the distance
between the surface of the sample and the surface of the tip
apex �Fig. 10�.

The corresponding force is then given by

FvdW�D + z� = −
�

��D + z�
U�D + z� = −

HR1

6�D + z�2 .

This expression was shown to describe van der Waals inter-
action in a realistic way in several FM-DFM studies.35–37

A Morse potential is chosen for the short-range interac-
tion,

UM�D + z� = − Eb�2 exp
− ��D + z − ���

− exp
− 2��D + z − ��� ,

describing a chemical bond with bonding energy Eb, equilib-
rium distance �, and decay length �−1. The corresponding
force is given by

FM�D + z� = 2�Eb�exp
− 2��D + z − ���

− exp
− ��D + z − ��� .

The total force Fint=FvdW+FM �Fig. 11� can be introduced in
the system as an additional block as illustrated in Fig. 12, but
the nonlinearity in the tip displacement D+z of this new
contribution makes the system not suitable for a treatment by
ordinary �linear� control theory methods. Linearizing the
force around the operating point is suitable only when the
oscillation amplitude is small compared to �−1. The nonlin-
ear block can then be replaced by a simple gain correspond-
ing to the local “stiffness” of the force.

In the opposite limit of large amplitude, as in general for
FM-DFM, it can be shown38,39 that due to the high Q value
of the cantilever, which acts as a very narrow band-pass filter

centered at its resonance frequency, and for not too strong
nonlinearities, the time Fourier expansions of the tip dis-
placement and of the interaction force can be safely reduced
to their fundamental terms: z�t��Ac sin��t� and Fint
D
+z�t���F1 sin��t��

F1

Ac
z�t� with

F1 =
�

�
�

0

2�/�

Fint
D + z�t��sin��t�dt . �51�

The nonlinear block of Fig. 12�a� can then be replaced by a
new block, which is called an equivalent gain, because its
transfer function N�Ac ,D�=

F1

Ac
depends on the values of Ac

and D+z at its input but not on the frequency 
Fig. 12�b��.
These assumptions and the frame to find the equivalent gain
of a nonlinear block in a closed-loop system in order to lin-
earize the response are based on the harmonic equivalent
approximation method detailed in Appendix C. How this
method is used to include both conservative and dissipative
forces is also presented there. The global harmonic function
of the cantilever interacting with the sample is then given by

z���
F���

=
1

k��0
2 − �2

�0
2 +

j�

Q�0
� − N�Ac,D�

. �52�

For ���0,

R1

D
2 Asp

substrate

z

t

FIG. 10. �Color online� Scheme of the relevant distances for the
cantilever-substrate system. z refers to the cantilever displacement
and D is the tip-substrate distance when the cantilever is at rest.

FIG. 11. Continuous line: total force Fint=FvdW+FM, with H
=1 eV, R1=10 nm and the parameters of the Morse potential taken
from Ref. 5: Eb=2.15 eV, �=0.235 nm, and �=15.5 nm−1.
Dashed line: Morse contribution. Dotted line: van der Waals
contribution.

=>
++++++

F zC(ω)

Fint(D+z)

++ D

N
(a)

++++++
F zC(ω)

F1(Ac, D)
Ac

(b)

FIG. 12. �a� The tip-substrate force is introduced as a new trans-
fer function N. The double rectangle box underlines the nonlinear
character of this block. In �b� the block N is replaced by an equiva-

lent gain of transfer function
F1

Ac
.
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z���
F���

�
1

k�2��0 − ��
�0

+
j

Q
� −

F1

Ac

=
1

k�2��0�1 −
F1

2kAc
� − ��

�0
+

j

Q
�

�
1

k�2��r − ��
�r

+
j

Q
�

with the new renormalized resonant frequency, �r=�0�1
−

F1

2kAc
�. Then,

	�

�0
=

�r − �0

�0

= −
F1

2kAc

= −
�0

2�kAc
�

0

2�/�0

Fint
D + Ac sin��0t��sin��0t�dt ,

�53�

an expression already derived using the Hamilton-Jacobi
approach.40 Under this approximation, valid only if 	�

�0
�1,

the transfer function of the cantilever is only affected by this
resonance frequency shift. Note that the time scale to estab-
lish this relation between 	� and Ac and D is on the order of
one period of the cantilever oscillation, which is a time much
shorter than all the other characteristic times of the system.
Accordingly, we will consider expression �53� as always
valid in the following analysis.

Expression �53� can be evaluated analytically, giving

	�

�0
= −

HR1

6k�D2 − Ac
2�3/2 − 2

�Eb

kAc
�exp
− ��D − ���J1��Ac�

− exp
− 2��D − ���J1�2�Ac� , �54�

where J1�x� is the Bessel function of the first kind of order
1.41 This result was derived in Ref. 23 using the variational
method developed in Ref. 42.

	f�D� curves obtained using the virtual AFM with the
tip-substrate forces displayed in Fig. 11 are compared in Fig.
13 with analytical expression �54�. The agreement is excel-
lent even in regions where the force becomes highly nonlin-
ear in the distance D. The contribution of the repulsive part
of the Morse potential is responsible for the increase in the
frequency shift for small distance in Fig. 13�b�.

B. Influence of the tip-substrate interaction on the noises

The frequency shift 	f = 	�
2� is given in the case of com-

bined van der Waals and Morse interactions by expression
�54�. An amplitude fluctuation �A of the oscillation z�t� of
the cantilever will then induce a frequency fluctuation

�	f = � �	f

�A
�

A=Asp

�A + O
��A�2� = ��Asp,D��A + O
��A�2� .

�55�

The calculated values of ��Ac=20 nm,D�, obtained from
expression �54�, are shown in Fig. 13. This relation shows
that, due to the nonlinear character of the oscillator, the
amplitude noise of z�t� generates frequency noise. This cou-
pling can be taken into account by considering general ex-
pression �12� for the position z�t� of the cantilever,

z�t� = Asp
1 + m�t��sin
�ct + ��t��

with m�t�=m0 cos��t+�a� as previously and ��t�
=�0 sin��t+���+�A

int�t�, where the new contribution �A
int�t�

due to amplitude fluctuation reads

(b)(a)

FIG. 13. �Color online� Red circles: 	f�D�= 	��D�
2� obtained with the virtual AFM with the following parameters: f0=

�0

2� =270 kHz, k
=30 N m−1, Q=45 000, Asp=20 nm, P=0.1 N m−1, I=10 N m−1 s−1, �D=2 ms, GPLL=5280 rad /s, �1=55 �s, �2=160 �s, and without
noise. Continuous lines: analytical curves from expression �54�. Dotted lines: −��Ac ,D� from expression �55�. Dashed lines: ��Ac ,D� from
expression �59�. −� and � are distinct but not distinguishable at the scale of the figure. �a� van der Waals contribution alone. Tip to sample
approach speed: 2 nm/s �b� total �van der Waals+Morse� tip-substrate interaction. Tip to sample approach speed: 1 nm/s.
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�A
int�t� =

�	f

�
=

��A

�
=

�

�
Aspm�t� =

�Aspm0

�
cos��t + �a� .

Expression �20� then becomes

z�t� = Asp sin��ct� + �za�sin
��c + ��t + �a�

+ sin
��c − ��t − �a� + �z��sin
��c + ��t + ���

− sin
��c − ��t − ��� + �zA
int�sin���c + ��t + �a +

�

2
�

− sin���c − ��t − �a −
�

2
�� ,

where

�zA
int =

�Asp
2 m0

2�
=

�Asp

�
�za. �56�

The new term is, as expected, a phase noise contribution, as
defined in Sec. III B 2. Starting from this expression of z�t�,
the calculation proceeds as in Sec. VI. Expression �45� for
�W��� stays unchanged because the phase modulation is not
transmitted by the synchronous demodulation of the oscilla-

tion amplitude, as demonstrated in Sec. IV and because the
tip-surface force is conservative. A nonconservative tip-
surface force would be represented by a complex equivalent
gain, leading to an increase in the effective Q value of the
cantilever, as shown in Appendix C. Expression �46� for
	f��� becomes

	f��� =
�

jAsp

H

1 − j
k

Q
CH

� jC�F�
�n� + �z�

�n� + j
�Asp

�
�za
˜� ,

�57�

where �za
˜ is still given by expression �43�. The frequency

noise generated by the amplitude fluctuations is seen by the
phase loop of Fig. 6 as an additional external noise source.
The two loops become coupled, as illustrated in Fig. 14.

Finally,

PSD	f��� = 4
�2

Asp
2 � H

1 − j
k

Q
CH�

2

� ��C�2SF
� + Sz

� + ��Asp

�
�2

�� C

1 − 2jCFAGC
�2

�SF
a + 4�FAGC�2Sz

a�� .

�58�

Due to the conservative interaction between the cantilever
and the surface, the four noise sources �SF

a ,SF
� ,Sz

a ,Sz
�� con-

tribute now to the frequency noise.
This expression can be written in a more instructive form

from expressions �48� and �49�,

PSD	f��� = PSD	f
w.i.��� + �2� H

1 − j
k

Q
CH�

2

PSDamp��� ,

where “w.i.” stands for “without interaction.”
Simulation results in the presence of the van der Waals

interaction alone are shown in Fig. 15. PSDw��� is not af-

(n)

+
++ HjC

δF

δzφ

(n)

(n)

δzφ ∆f%

k/Q

ν/jAsp
φ

+
+

jαAsp/ν

+
+

+
+ 2FagcjC

δwδF
δz

(n)
a

δza%a

FIG. 14. �Color online� The amplitude noise of the AGC loop is
converted into phase noise by the tip-substrate interaction, which is
injected into the frequency demodulation loop. The coupling path is
in red.

(b)(a)

FIG. 15. �Color online� Simulated and calculated �a� PSDw��� and �b� PSD	f��� for the van der Waals contribution alone for different
tip-substrate distance D with P=0.01 N m−1, I=0.5 N m−1 s−1, SF=3.14�10−30 N2 Hz−1 �T=300 K�, Sz=2�10−28 m2 Hz−1, and the
other parameters as in Fig. 13.
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fected by the interaction, while PSD	f��� increases by orders
of magnitude when the tip gets closer to the surface due to
the term proportional to �2 in expression �58�. The analytical
expressions follow closely the simulation results.

When the total interaction �van der Waals+Morse� is in-
troduced, PSDw��� �not shown� stays unaffected and
PSD	f��� �Fig. 16� behaves roughly as in the van der Waals
case. Nevertheless, two differences appear. First, because of
the onset of the repulsive interaction when the tip is closer to
the surface, �2 goes to zero at the minimum of the 	f�D�
curve �D�20.24 nm� shown in Fig. 13�b�. This explains
why the noise decreases from D=20.3 nm to D
=20.24 nm in Fig. 16. Second, the analytical expression
does not predict correctly the spectrum at D=20.24 nm be-
cause � is close to zero at this distance and the expression of
the amplitude induced frequency shift �55� can no more be
limited to its linear term.

This dependence of the noise on 	f on the distance D can
be observed on some of the published experimental 	f�D�
curves. Figure 2 of the work of Abe et al.43 provides a very
clear example of this phenomenon.

IX. CLOSING THE AUTOMATIC DISTANCE CONTROL
LOOP

A. Derivation of the distance noise

When used in the constant frequency detuning imaging
mode, the control system of the FM-DFM adjusts the tip-
substrate distance D�t� in order to maintain the frequency
detuning 	f�t� equal to the set point 	fsp. This is the role of
the automatic distance control �ADC� loop, which is in-
cluded in the scheme of Fig. 17. The error signal 	fsp
−	f�t� is fed into a P-I block described by the harmonic
function

FADC��� = �PADC +
IADC

j�
� ,

and the resulting signal D�t� acts on the tip-substrate distance
via a piezoelectric transducer.

Let us consider a modulation of the distance represented
by: �D�t�=�D0 cos��t+�D�, where ���c and �D0�D�t�.

This low frequency component has no direct influence on the
behavior of the system because it is very efficiently filtered
out by the transfer function of the cantilever. Nevertheless, a
distance modulation �D will induce a frequency modulation,

�	f = � �	f

�A
�

A=Asp

�A + � �	f

�D
�

A=Asp

�D + O
��A�2,��D�2�

= ��Asp,D��A + ��Asp,D��D + O
��A�2,��D�2� . �59�

The calculated values of ��Ac=20 nm,D�, obtained from
expression �54�, are shown in Fig. 13.

This new contribution results as previously �Sec. VIII B�
in a new term in z�t�,

z�t� = z0 sin��ct� + �za�sin
��c + ��t + �a�

+ sin
��c − ��t − �a� + �z��sin
��c + ��t + ���

− sin
��c − ��t − ���

+ �zA
int�sin���c + ��t + �a +

�

2
�

− sin���c − ��t − �a −
�

2
��

+ �zD
int�sin���c + ��t + �D +

�

2
�

− sin���c − ��t − �D −
�

2
�� ,

where �zA
int=

�Asp

� �za and �zD
int=

�Asp

2� �D0.

Equation �42�, giving the phase modulation �z�
˜, general-

izes to

C� k

Q
H��z�

˜ + �z�
�n� + j�zA

int̃ + j�zD
int̃� + �F�

�n�� = − j�z�
˜

�60�

with �zA
int̃=�zA

int exp�j�a� and �zD
int̃=�zD

int exp�j�D�. But the

new contribution �zD
int̃ cannot be considered as a new noise

source, external to the phase loop, because it depends on �z�
˜

via the ADC loop. Note that we could also introduce at this
level a new external source noise to take into account the
vibration that could affect the tip-surface distance D�t� due to
the vibrations in the environment of the experiment. But as
previously mentioned, this type of noise is too specific to
lend to a general treatment.

Using

FIG. 16. �Color online� Simulated and calculated PSD	f��� for
the total interaction for different tip-substrate distances D. Same
parameters as in Fig. 15. The blue curve is the analytical expression
corresponding to D=20.24 nm.

+
+

+
+

CTS
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z(t)

f(t)
SD

+

PI
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exc(t)
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e(t) ∆fsp

+PIadc

D(t)

A
G
C

FIG. 17. Scheme of the complete control system, including the
ADC.
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	f�t� = ��out�t�

=
�

jAsp
�H exp�j�t���z�

˜ + �z�
�n� + j�zA

int̃ + j�zD
int̃� − c.c. ,

the ADC output reads �Fig. 17�

�D�t� = FADC�0�
	fsp − 	f�0�� −
�

jAsp

FADCH exp�j�t���z�

˜

+ �z�
�n� + j�zA

int̃ + j�zD
int̃� − c.c.�

with the component at the frequency �,

�D0 exp�j�D� = −
2�

jAsp
FADCH��z�

˜ + �z�
�n� + j�zA

int̃ + j�zD
int̃�

= �zD
int̃ 2�

�Asp
,

giving

j�zD
int̃ = −

�FADCH

1 + �FADCH
��z�
˜ + �z�

�n� + j�zA
int̃� . �61�

By replacing j�zD
int̃ by this expression in Eq. �60�, we get

�z�
˜ =

jC� k

Q
H��z�

�n� + j�zA
int̃� + �1 + �FADCH��F�

�n��
1 + �FADCH − jC

k

Q
H

.

�62�

	f��� is then given by the generalization of expression �39�,

	f��� =
�

jAsp
H��z�

˜ + �z�
�n� + j�zA

int̃ + j�zD
int̃�

=
�

jAsp
H

�z�
˜ + �z�

�n� + j�zA
int̃

1 + �FADCH
.

Using expression �62�, we get

	f��� =
�

jAsp

H

1 − j
k

Q
CH + �FADCH

�� jC�F�
�n� + �z�

�n� + j
�Asp

�
�za
˜� ,

where �za
˜ is still given by expression �43�.

The PSD reads finally

PSD	f��� = 4
�2

Asp
2 � H

1 − j
k

Q
CH + �FADCH�

2

� ��C�2SF
� + Sz

� + ��Asp

�
�2

�� C

1 − 2jCFAGC
�2

�SF
a + 4�FAGC�2Sz

a�� .

�63�

This expression can be represented by the block diagram of
Fig. 18, which differs from the diagram of Fig. 14 by the
addition of the ADC loop, which is isolated in Fig. 19. The
closing of the ADC loop changes � H

1−j k
Q

CH
�2 in expression

�58� to � H

1−j k
Q

CH+�FADCH
�2 in expression �63� because the ADC

loop is now connected in parallel with the frequency de-
modulation loop. The global open-loop gain is then the sum
of the open-loop gain of the frequency demodulation loop
equal to j k

QCH and the open-loop gain of the ADC loop
equal to −�FADCH as inferred from the response in distance

�D˜ to a distance change �Dext �Fig. 19�,

�D˜ =
− �FADCH

1 + �FADCH
�Dext. �64�

The four noise source terms in the brackets of expression
�63� are not affected by the closing of the ADC.

Finally, the PSD of the distance D is given by

PSDD��� = �FADC�2PSD	f��� �65�

or

PSDD��� =
4

�2

�2

Asp
2 � �FADCH

1 − j
k

Q
CH + �FADCH�

2

� ��C�2SF
� + Sz

� + ��Asp

�
�2

�� C

1 − 2jCFAGC
�2

�SF
a + 4�FAGC�2Sz

a�� .

�66�
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FIG. 18. �Color online� Same as Fig. 14 with the ADC loop �in
blue�.
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FIG. 19. Block diagram of the ADC loop.
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Numerical results of Fig. 20 show that, as expected, PSDw���
is not affected by the closing of the ADC loop, while
PSD	f��� is well described by expression �63�. Note the cor-
respondence between the frequency shifts labeling the spec-
tra of Fig. 20�b� and the distances labeling the spectra of Fig.
16�b�. They are related by the 	f�D� curve of Fig. 13�b�. The
PSD	f��� spectrum that would correspond to D=20.2 nm in
Fig. 16�b� does not appear in Fig. 20�b� because � becomes
negative for this distance, corresponding to a negative slope
of the 	f�D� curve: the ADC loop becomes unstable in these
conditions.

Figure 21 compares PSD	f��� and PSDD��� spectra for

two different settings of the ADC feedback loop. In Figs.
21�a� and 21�b�, �FADC is kept constant in order to fix the
same D measuring bandwidth for all spectra 
expression
�64��. The optimal bandwidth is fixed by the scanning speed
chosen for imaging and by the topography of the surface
under consideration. It is then normal to keep it at a constant
value while varying the frequency detuning set point. In
these conditions, it is seen in Fig. 21�b� that the distance
noise globally decreases as the tip gets closer to the surface.
This phenomenon originates in the �−2 dependence of
PSDD��� observed in expression �66� for constant �FADC. In
contrast, FADC is kept constant in Figs. 21�c� and 21�d�. Now,

(b)(a)

FIG. 20. �Color online� Simulated and calculated �a� PSDw��� and �b� PSD	f��� for the total tip-substrate interaction for different 	fsp

with P=0.1 N m−1, I=10 N m−1 s−1, SF=3.14�10−30 N2 Hz−1 �T=300 K�, Sz=2�10−28 m2 Hz−1, and the other parameters as in Fig. 13.
�FADC is kept constant ��PADC=0.2 and �IADC=400 s−1�.

(b)(a)

(c) (d)

FIG. 21. �Color online� 
�a� and �c�� PSD	f���; 
�b� and �d�� PSDD���. For �a� and �b�, �PADC=0.2 and �IADC=400 s−1. For �c� and �d�
PADC=3.5�10−13 m s, IADC=7�10−10 m. Otherwise, same parameters as for Fig. 20.
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the distance noise behaves as the frequency noise: it in-
creases as the tip gets closer to the surface. Nevertheless, this
setting of the ADC loop is not realistic as it leads to very
small bandwidth when the tip is far from the surface. This is
the reason why no simulation data are presented in Figs.
21�c� and 21�d�; the calculation time to stabilize the tip-
substrate distance becomes very long for small frequency set
point 	fsp with this ADC setting. This behavior is well
known to experimentalists, who are used to reduce the ADC
bandwidth when decreasing 	fsp �tip closer to the surface� to
avoid instabilities.

B. Influence of the amplitude set point on the distance noise

The amplitude set point is one of the important settings
accessible to the experimentalist and its influence on the dis-
tance noise has been analyzed in detail by Giessibl et al.5,44

To discuss this point, we rewrite expression �66� in the fol-
lowing form:

PSDD��� =
4

�2

�2

Asp
2 � �FADCH

1 − j
k

Q
CH + �FADCH�

2

��C�2SF
� + Sz

��

+ ��

�
�2

� �FADCH

1 − j
k

Q
CH + �FADCH�

2

PSDamp���

= PN + AN.

Two contributions can be distinguished in this expression:
�i� The first one originates from the phase noise sources,

SF
� and Sz

�, which induce distance fluctuations via the con-
version factor �−1. This is the starting point of the analysis
carried on by Giessibl et al.44 to evaluate the optimal imag-
ing parameters for FM-DFM. If, as previously, �FADC is kept
constant to fix the D measuring bandwidth, the amplitude
dependence of this phase noise �PN� contribution follows
��Asp�−2.

�ii� The second one originates from the amplitude noise
sources, as a direct consequence of the coupling of the two
feedback loops illustrated in Figs. 14 and 18: SF

a and Sz
a in-

duce frequency fluctuations via the conversion factor � and
then distance fluctuations via the conversion factor �−1. As

demonstrated in the following, this contribution, which was
not considered until now, cannot generally be neglected. The
amplitude dependence of this amplitude noise �AN� contri-
bution follows �� /��2.

PSDD��� is decomposed in its four terms in Fig. 22 for
large �Asp=20 nm 
Fig. 22�a��� and small �Asp=0.5 nm 
Fig.
22�b��� amplitudes and for the same closest tip-substrate dis-
tance b=D−Asp=0.35 nm. It is seen that the AN contribu-
tion �triangles and crosses� dominates the distance noise
spectrum in both cases.

This behavior can be understood from the way � and �
depend on Asp. As demonstrated in Ref. 44 and confirmed in
Fig. 23, � scales approximately as Asp

−3/2 when the amplitude
is larger than the range of the interaction, given here by
�−1�0.065 nm. Then the PN noise contribution decreases
as ��Asp�−2�Asp, as observed in Fig. 22. This observation
constitutes the main argument developed in Ref. 44. But in
the same time, �� /��2 decrease from unity for large ampli-
tude to 0.49 for Asp=0.5 nm. The AN contribution is then
hardly reduced because the decrease in the noise due to the
increase in � is approximately compensated by the increase
in −� �Fig. 23�. Somewhat unexpectedly, the relative contri-
bution of the nonlinear terms increases for small amplitudes.

This observation shows that reducing the amplitude does
not lead to a significant reduction in the distance noise at
least in the amplitude range explored in this analysis.

Of course, reducing the amplitude to Asp=0.5 nm while
keeping the cantilever stiffness at k=30 N /m is not practical
in most situations because kAsp should stay above a threshold

(b)(a)

FIG. 22. PSDD��� decomposed in its four contributions for �a� Asp=20 nm and �b� Asp=0.5 nm. P=0.01 N m−1, I=0.5 N m−1 s−1,
�PADC=0.2, �IADC=400 s−1, SF=3.14�10−30 N2 Hz−1, and Sz=2�10−28 m2 Hz−1.

FIG. 23. −��Asp ,Asp+0.35 nm� and ��Asp ,Asp+0.35 nm�.
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value to avoid “jump-to-contact” instabilities. The amplitude
and the stiffness should be optimized simultaneously. This
important discussion is outside the scope of this work and
will be the subject of a forthcoming paper.

X. COMPARISON WITH EXPERIMENT

We present some experimental measurements to show
how they compare to the analytical formula derived previ-
ously. A more precise study will be published elsewhere. The
experiments were performed with a room temperature AFM/
scanning tunneling microscopy �STM� from Omicron
Nanotechnology,45 where a Superlum laser diode was used
instead of the original light source.46 The control system
from Omicron �with the SCALA software�45 was used in con-
junction with the amplitude controller and the easy PLL de-
modulator commercialized by NanoSurf,19 configured in the
PLL-excitation mode.

The nanosensor NCH cantilever47 was characterized by
measuring the PSD of its fluctuations at room temperature
and adjusting this spectrum with

PSDz��� = �Cl����2SF + Sz. �67�

As demonstrated in Fig. 24, a good fit is obtained with f0

=271 195 kHz, k=30 N /m, Q=25 000 and Sz=8
�10−27 m2 Hz−1.

Figure 25 shows PSDw��� and PSD	f��� obtained in the
constant frequency detuning mode while investigating the
surface of a cleaved KBr monocrystal in UHV �Ref. 46� for
two values of the frequency shift, with an amplitude setup of
Asp=4 nm. A good agreement can be reached with the pa-
rameters indicated in the legend and with the following two
modifications:

�1� It was necessary to use the experimentally determined
transfer function of the PLL instead of expression �16� de-
rived from our model PLL to get a better agreement �see Fig.
26�.

�2� Not surprisingly, it was necessary to introduce noise in
the distance D of PSD SD=10−26 m2 Hz−1. This noise is
probably generated by the high voltage amplifier that con-
trols the tip-substrate distance piezoceramics.

As expected, we confirm the main conclusions of the pre-
vious calculations and simulations. PSDw��� does not depend
on the frequency shift, while PSD	f��� increases when �	f �
increases, i.e., when the tip gets closer to the surface. The
peaks that appear near 200 Hz in the 	f spectra of Fig. 25�b�
are the signature of the nonlinear tip-substrate interaction,
which injects amplitude noise in the frequency demodulation
loop.

FIG. 24. �Color online� Two-sided PSD of the thermal fluctua-
tions of the cantilever at room temperature. Open black squares:
average of 256 experimental spectra. Red line: analytical expression
�67�.

(b)(a)

FIG. 25. �a� PSDw��� and �b� PSD	f��� for 	fsp=−10 Hz �dashed lines� and 	fsp=−28 Hz �dotted lines�. The continuous line in �a� is
analytical expression �47�; the continuous lines in �b� correspond to analytical expression �63� with �=−�=35 and 85 Hz nm−1�. Other
parameters: P=0.07 N m−1, I=1 N m−1 s−1, �D=2 ms, PADC=2�10−13 m s, and IADC=4�10−10 m.

.

.

FIG. 26. Modulus of H��� used to perform the numerical simu-
lations of previous sections �continuous line� and experimentally
determined �dashed line�.
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XI. DISCUSSION AND CONCLUSION

The model FM-DFM on which are based the calculations
and simulations presented in this work does not include all
the devices that constitute the real experiment. It is minimal
in the sense that all the nonessential elements have been
eliminated for the sake of simplicity and generality. Despite
this simplification, it is still adequate to reproduce experi-
mental measurements, as shown by the comparison pre-
sented in Sec. X.

The methods developed here can be adapted to different
FM-DFM setups without difficulty. For instance, it is quite
easy to obtain analytical expressions for the different noises
when the so-called “self-excitation” mode is used instead of
the PLL-excitation mode, which was chosen in this work. It
is also straightforward to include specific elements such as a
band-pass filter at the input of the PLL as reported by many
groups in order to increase the signal-to-noise ratio of the
frequency demodulator.

The comparisons that were systematically performed be-
tween the analytical predictions and the numerical simula-
tions demonstrate that the approximations that were pro-
posed are essentially correct for calculating the noise of the
instrument. An exception has been reported for the data of
Fig. 16�b� where the linear approximation of expression �55�
breaks down. More generally, these analytical expressions
cannot be used to address situations where high level signals
are involved, for instance, in the presence of very high noise
or transient signals resulting from abrupt changes in the state
of the instrument, such as when scanning a very rough sur-
face at high speed. Nevertheless, they can be used to calcu-
late the response to small excitations such as a step in the
distance D or in the energy dissipated between the tip and the
surface. As such, they are useful to rationalize the settings of
the feedback loops of the AFM control system, which are
usually chosen on an empirical basis. This will be done in a
future paper.

The main results and consequences of this work are the
following:

�i� Distinguishing carefully between amplitude and phase
noise leads to a description of the way noises affect the be-
havior of the instrument in terms of two feedback loops �Fig.
6�; the AGC loop carries amplitude noise, while the fre-
quency demodulation loop carries phase noise.

�ii� These loops are independent when the tip is far from
the surface of the sample; they become coupled when the
tip-substrate interaction is taken into account �Figs. 14 and
18�. The magnitude of these couplings is determined by two
coefficients that are related to the nonlinear character of the
cantilever oscillation induced by the interaction: ��Asp ,D�
= � �	f�A,D�

�A �A=Asp
and ��Asp ,D�= � �	f�A,D�

�D �A=Asp
.

�iii� If the tip-substrate interaction is conservative, which
is the case considered so far, these couplings generate only
extra noise terms, which affect the frequency shift 	f�t�, but
not the dissipation signal w�t�.

�iv� A dissipative interaction can be easily incorporated in
the model. If this interaction has a stochastic component,
which is generally the case,48 it will generate noise that will
appear on both the dissipation signal w�t� and the frequency
shift 	f�t� signal.

�v� The noise in the frequency detuning 	f�t� 
expression
�63�� and in the distance D�t� 
expression �66�� depends on
the frequency detuning set point 	fsp via two contributions:
�1� a change in the measuring tip-surface distance band-
width, determined by �, and �2� the noise coming from the
AGC loop, determined by �. The role of the nonlinear con-
tribution to these noises had not been considered before this
work.

Among the possible applications of the methods devel-
oped here are the following:

�i� Choosing the best experimental strategy for a given
type of measurement constitutes certainly a major issue to
which the present work can contribute. An example of spe-
cial importance is how to optimize the parameters of the
oscillating probe �resonance frequency, stiffness, amplitude�,
which was already discussed by Giessibl et al.44 This work
was done without considering the nonlinear contributions to
the noise. A preliminary evaluation, using our analytical ex-
pressions, shows that even in the case of a tuning fork work-
ing at rather low amplitude,49 the neglect of the nonlinear
terms can lead to significant quantitative disagreements.

�ii� As already mentioned, the analytical expressions we
derived give transfer functions that can be used to rationalize
the feedback loop settings of the instrument. The usual meth-
ods of control theory can then be applied for this purpose.

Finally, we believe that understanding and mastering a
scientific instrument does not reduce to an understanding of
its functioning principles but that it requires also getting a
detailed view on the way noise affects its behavior. We hope
that this work will contribute to a better understanding of
FM-DFM.
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APPENDIX A: DERIVATION OF THE PHASE TRANSFER
FUNCTION OF THE PHASE-LOCKED LOOP

DEMODULATOR

1. Voltage controlled oscillator

The voltage controlled oscillator �VCO� is the key com-
ponent of the PLL �Fig. 4�. It oscillates at an angular fre-
quency �VCO related to the input signal d�t� by

�VCO�t� = �CF + K0d�t� , �A1�

where �CF and K0 are the VCO central frequency and gain.
In FM-DFM, the central frequency �CF is usually fixed by
the user at �0, the free resonance frequency of the cantilever:
�CF=�0.

The VCO produces a sinusoidal signal e�t� whose phase is
given by integrating �VCO�t�,
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e�t� = cos��
0

t


�0 + K0d�t���dt�� = cos
�0t + �out�t��

�A2�

with

�out�t� = K0�
0

t

d�t��dt�. �A3�

2. Phase transfer function of the PLL demodulator

An amplitude and phase modulated signal is applied to
the input of the frequency demodulator �Fig. 4�,

a�t� = Ac
1 + m�t��sin
�ct + �in�t�� .

As discussed in Sec. V, the signal is passed through a sgn
block. If m�t��1,

b�t� = sgn
a�t�� = sgn�sin
�ct + �in�t�� .

This expression can be expanded in Fourier series,

b�t� =
4

�
sin
�ct + �in�t�� + �odd harmonics� . �A4�

When the PLL is locked, �VCO=�c. The difference between
the frequency of the input signal �c=�VCO and the resonance
frequency of the cantilever far from the surface �0=�CF is
then given by expression �A1�: 	�=�VCO−�CF=K0d�t� and
the VCO generates a sinusoidal signal e�t�=cos
�ct
+�out�t��. Then,

c�t� �
4

�
sin
�ct + �in�t��cos
�ct + �out�t��

�
2

�
sin
�in�t� − �out�t�� ,

where the higher harmonics, which will be attenuated by the
following low-pass filter, have been neglected. If the phase
error �in�t�−�out�t��2� rad,

c�t� �
2

�

�in�t� − �out�t�� , �A5�

The multiplier plays the role of a phase comparator. Then,

d�t� �
2K�

�

�in�t� − �out�t�� . �A6�

From the diagram of Fig. 27, the open-loop phase transfer
function is given in Laplace form by

HOL�s� =
�out�s�
�in�s�

=
2

�
KvFPLL�s�

K0

s
, �A7�

where the Laplace transforms are represented by capital let-
ters and FPLL�s� is the transfer function of the low-pass filter,
considering the Laplace transforms of expressions �A3� and
�A5�. The close-loop transfer function reads then

HCL�s� =
�out�s�
�in�s�

=
GPLL

s

FPLL�s�
+ GPLL

�A8�

with the equivalent gain GPLL= 2
�KvK0, also named the natu-

ral pulsation of the PLL.26

APPENDIX B: METHODS AND PROCEDURES FOR THE
NUMERICAL SIMULATIONS

Methods

Numerical simulations were performed with our virtual
AFM �Ref. 15� using the MATLAB Simulink toolbox.14 The
AGC is modeled as in Figs. 3 and 5 and the PLL is modeled
as in Fig. 4. Care was taken to wait a long enough time after
the start of the simulation to avoid transients contributing to
the spectra. The variable time-step solver ode45 of MATLAB,
which is based on an explicit Runge-Kutta �4,5� formula, the
Dormand-Prince pair was used with a maximum step size of
10−7 s. A simulation time of 0.25 s per spectrum was chosen,
giving a frequency bin of 4 Hz. In the following, we estab-
lish the relation between continuous and discrete spectral
quantities to precise the conventions used.

a. Fourier transforms: Relation between the continuous and
discretized spectrum

An analog signal x�t� is discretized,

xi = x
t = �i − 1��t�, i = 1, . . . ,N ,

where T= �N−1��t is the duration of the sample. The �con-
tinuous� Fourier transform �FT� is defined as

X�f� � �
−�

+�

x�t�exp�− j2�ft�dt . �B1�

The discretized values of the FT reads

Gk = X
f = �k − 1��f�, k = 1, . . . ,N

with �f = 1
�N−1��t = 1

T is the frequency bin. Here,

Gk = �
−�

+�

x�t�exp�− j2�
�k − 1�t

�N − 1��t
�dt

� �
i=1

N

xi exp�− j2�
�k − 1��i − 1�

�N − 1� ��t .

Then, Gk��tXk, where Xk is the discrete Fourier transform
�DFT� of �xi. To recover the FT value from the discrete
transform, one should multiply by �t �this is consistent with
dimensional analysis�.

+ Fpll(s)
Φin(s)

Φout(s) K0/s

Kν

C(s)

D(s)
− 2/π

FIG. 27. Block diagram of the PLL for signal phases.
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b. Expression of the power spectral density

In the following and unless otherwise specified, we use
two-sided power spectral density given by SX�f�
� limT→�

�X�f��2
T .51 Its discrete expression is given by

�Xk�2�t2

T
= �t

�Xk�2

�N − 1�
. �B2�

The variance of x�t� is related to its PSD by

�x2� =
1

T
�

0

T

�x�t��2dt = �
−�

� �X�f��2

T
df = �

−�

�

SX�f�df .

�B3�

The discrete expression of �−�
� SX�f�df is

�x2� = �
−�

�

SX�f�df � �
k=1

N �Xk�2�t2

T

1

T
=

�t2

T2 �
k=1

N

�Xk�2. �B4�

PSDs were calculated from the modulus square of the Fou-
rier transform of the data after application of a Hanning win-
dow using expression �B2�. Variances can be obtained from
the spectra by expression �B4�.

These considerations can be illustrated by the result of the
simulation shown in Fig. 28. A random force of two-sided
PSD SF=

2kkBT

�0Q , corresponding to the equilibrium thermal

noise, is applied to a cantilever with f0=
�0

2� =270 kHz, k
=30 N /m, and Q=45 000 at room temperature �kBT=4
�10−21 J�. The PSD of the cantilever displacement z is
shown for positive frequencies in Fig. 28. The variance of z
is obtained by expression �B4� from twice the area under the
resonance peak �to take into account the negative frequen-
cies� with �z2�=1.25�10−22 m2 Hz−1. This value is in good
agreement with the value given by the equipartition of en-
ergy �z2�=

kBT

k =1.33�10−22 m2 Hz−1.

APPENDIX C: THE HARMONIC EQUIVALENT
APPROXIMATION METHOD

For a linear system with input w and output s, one defines
the transfer function starting from sinusoidal test functions of

the type w�t�=w0 sin��t� by the amplitude ratio �=
s0

w0
and

the phase � of the response s�t�=s0 sin��t+��. Thanks to
the properties of linearity, � and � are functions of the fre-
quency of the input, but they do not depend on its amplitude:
this makes possible to define a transfer function that is re-
lated to � only.

In order to extend this procedure to a nonlinear system,
one is led to study the output for a harmonic input w�t�
=w0 sin��t�. The response will be in general periodic but
nonsinusoidal. If by an arbitrary convention, one defines at
the output of the nonlinear element N �see Fig. 29� a sinu-
soidal function

nl�t� = nl1 sin��t + �� = a1 sin��t� + a1� cos��t� �C1�

declared �arbitrarily� equivalent to the input s�t�, one can
define for the system an equivalent transfer function or gen-
eralized transfer function with

modulus =
nl1

s1
and argument = � .

As the equivalent sinusoidal function one generally takes the
first harmonic of s�t�. The difference with the linear case is
twofold:

�i� There is an arbitrary element in the choice of the
equivalent sinusoid as the output.

�ii� The equivalent transfer function obtained depends not
only on � but also on the input amplitude s1 since there is no
more proportionality of the effects to the causes as in the
linear case,

N�s1,�� =
nl1

s1
ej� and � = ��s1,�� �C2�

with

nl1ej� = a1 + ja1�. �C3�

The concept of stability of a system can thus change accord-
ing not only to its frequency of operation but also to the
amplitude of the signal entering the transfer function.

If the equivalent transfer function depends only on �, one
will then speak about a pseudolinear system.52 If the equiva-
lent transfer function depends only on s1, one will speak then
about equivalent gain N�s1�.22

It is generally difficult to specify precisely the validity

(Hz)

(m2 Hz-1)

FIG. 28. �Color online� PSD of z for a cantilever submitted to a
random thermal force �see text�. Squares: simulation data; red line:
analytical expression: PSDz�f�= �Cl�f��2SF. T=0.5 s, �t=10−7 s. 30
spectra have been averaged.

++++++
w sC

N

FIG. 29. Closed loop nonlinear system with the linear transfer
function C and the equivalent transfer function N providing the
nonlinear signal nl�t�.
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domain of this method and one has to rely on analytical
calculations or numerical simulations to check it. In the par-
ticular case where the linear block C that follows the nonlin-
ear body presents a marked resonance peak, the approxima-
tion is justified. The nonlinear block becomes in this case
quasilinear.

Note that this method is a special case of the method of
describing functions,53 which was used once in the context of
tapping-mode AFM.54

1. Conservative interaction case

Let us consider for this study the van der Waals tip-
surface force, as defined in Sec. VIII A,

nl�t� = −
HR1

6
D + s�t��2 , �C4�

where D is supposed to be constant. This relation between
s�t� and nl�t� corresponds to the block N of Fig. 29.

From this relation, let us obtain the equivalent gain N�s1�
knowing that nl�t�=a1 sin��t�+a1� cos��t� 
see relation
�C1�� in the harmonic equivalent approximation. From this
relation,

a1 =
�

�
�

0

2�/�

nl�t�sin��t�dt �C5�

and

a1� =
�

�
�

0

2�/�

nl�t�cos��t�dt . �C6�

Replacing nl�t� by relation �C4� we get a1= HR
3

s1

�D2−s1
2�3/2 and

a1�=0. Using Eqs. �C1� and �C2�, we obtain

N�s1� =
HR

3

1

�D2 − s1
2�3/2 . �C7�

The equivalent transfer function depends only on s1; it is thus
an equivalent gain. It is purely real, characterizing a conser-
vative interaction. To find the harmonic function of the can-
tilever oscillating in interaction with surface, one uses this
expression of the equivalent gain in relation �52� such that

s1

w0
��� =

1

k

1

�1 −
�2

�0
2� + j

�

Q�0
−

HR

3k

1

�D2 − s1
2�3/2

. �C8�

2. Dissipative interaction case

To illustrate how a nonconservative interaction can be
treated in a similar way, we propose the simple model of Fig.
30, which is built is such a way that the force when the tip
gets closer to the surface is different from the force when the
tip retracts, generating the force hysteresis cycle shown in
the figure. In such a situation an energy given by the area of
the hysteresis cycle A=2F1	 is dissipated during each cycle,
in addition to the energy required to maintain the cantilever
amplitude at s1, given by �

k
Qs1

2.
As previously, the expression of the equivalent gain N�s1�

can be established by using relations �C5� and �C6�,

a1 =
�

�
�

0

�1

�− �F1 sin��t�dt +
�

�
�

�2

2�/�

�− �F1 sin��t�dt

=
2F1

�
�1 − �	

s1
�2

and

a1� =
�

�
�

0

�1

�− �F1 cos��t�dt +
�

�
�

�2

2�/�

�− �F1 cos��t�dt

= −
2F1

�

	

s1
.

Thus a complex equivalent gain is obtained,

N�s1� =
a1 + ja1�

s1
=

2F1

�s1
��1 − �	

s1
�2

− j
	

s1
� , �C9�

and the harmonic function characterizing the cantilever in
interaction reads

s1

w0
��� =

1

k

1

��1 −
�2

�0
2� −

2F1

�ks1
�1 − �	

s1
�2� + j

�

Q�0
�1 +

Q�0

�

2F1

�k

	

s1
2� . �C10�

FIG. 30. �Color online� Model for a dissipative interaction.
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The comparison with expression �C8� shows that the imagi-
nary part of the equivalent gain leads to a reduction in the
effective quality factor of the system. This is the direct con-
sequence of the dissipative character of the interaction and
one can easily generalize this observation to any dissipative
interaction.

Let us introduce the dimensionless quantity �=1
+

Q�0

�

2F1

�k
	

s1
2 , which gives the effective quality factor Q

� in the
presence of dissipative interaction. � is related to the ratio of
A=2F1	, the energy dissipated by the nonconservative in-
teraction, and to �

k
Qs1

2, the energy dissipated in the absence
of interaction to maintain the cantilever amplitude at s1. We
also introduce the other dimensionless quantity �

=
2F1

�ks1
�1− � 	

s1
�2, which is the ratio of the stiffness of the con-

servative interaction force to the cantilever stiffness k. The
generalized harmonic function of the oscillator reads then

s1

w0
��� =

1

k

1

��1 −
�2

�0
2� − �� + j

�

Q�0
�

. �C11�

3. General case for conservative and dissipative interactions

The expressions of � and � can be generalized to an
arbitrary force F
s�t� ,D�,

� =
�

s1�k
�

0

2�/�

F
s�t�,D�sin��t�dt =
a1

s1k
, �C12�

� = 1 +
Q�0

s1�k
�

0

2�/�

F
s�t�,D�cos��t�dt = 1 +
a1�

s1k

Q�0

�
.

�C13�

� and � are two dimensionless quantities associated with
the conservative and the dissipative contributions of the tip-
sample interaction averaged over one oscillation period, re-
spectively. The expression for � was originally derived by
Giessibl40 using the Hamilton-Jacobi formalism. A similar
expression for � was obtained by Sader et al.55
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